Imagine that the prism pictured below is packed full of smaller identical prisms. The length of each edge of the small prisms is a **unit fraction**.

![Prism Diagram](image)

1. Give the dimensions of the small prisms that can be used to pack the larger prism.

 ![Small Prism Dimensions](image)

2. How many of the small prisms would it take to completely fill the larger prism? Explain how you found your answer.

 The bottom layer would have six blocks on it. There would be nine total layers. So \(6 \cdot 9 = 54\) total blocks.

 ![Top View](image)

3. Explain how the number of the small prisms needed to fill the larger prism is related to the volume of the large prism.

 The volume of each small box times the number of boxes is equal to the volume of the large box. The sum of the small boxes’ volumes is the same amount of space as the large box’s volume.

Mathematics Formative Assessment System
Florida Center for Research in Science, Technology, Engineering, and Mathematics
Copyright ©2014 - All Rights Reserved
The floor of a cargo truck is $22 \frac{1}{2}$ square feet. What is the volume of the storage space in cubic feet if the truck is $7 \frac{1}{5}$ ft high? Show, label, and explain your work.

\[
V = bwh \\
V = Bh \\
V = 22 \frac{1}{2} \cdot 7 \frac{1}{5} \\
V = \frac{9}{12} \cdot \frac{36}{5} \\
V = \frac{9}{1} \cdot \frac{18}{1} \\
V = 162 \text{ ft}^3
\]
Leo's recipe for banana bread won't fit in his favorite pan. The batter fills the 8.5 inch by 11 inch by 1.75 inch pan to the very top, but when it bakes it spills over the side. He has another pan that is 9 inches by 9 inches by 3 inches, and from past experience he thinks he needs about an inch between the top of the batter and the rim of the pan. Should he use this pan?

1. \[V = bwh \]
 \[V = 8.5 \cdot 11 \cdot 1.75 \]
 \[V = 93.5 \cdot 1.75 \]
 \[V = 163.625 \text{ in}^3 \]

2. **New Pan**
 \[V = bwh \]
 \[V = 9 \cdot 9 \cdot 3 \]
 \[V = 81 \cdot 3 \]
 \[V = 243 \text{ in}^3 \]
 \[\frac{243}{243} \]
 It will fit, but will there be one inch at the top?

3. \[\frac{163.625}{9.9} = h \]
 \[163.625 = \frac{81}{9.9} h \]
 \[163.625 = 81 h \]
 \[h = \frac{163.625}{81} \]
 \[h = 2 \text{ in.} \approx h \]
 You will have one inch at the top.
Blaise wants to persuade his dad to help him build a ramp in the shape of a triangular prism, so he can learn to perform tricks on his skateboard. Mr. Powers told Blaise to make a diagram to help figure the cost of materials. Draw a net that Blaise can show his dad, and label the dimensions in inches.

Not drawn to scale.
A company needs to paint one of its shipping containers (in the shape of a rectangular prism) with anti-rust paint. Each bucket of paint will cover 1000 square feet.

Use the net below to determine how many buckets of paint the company will need to buy to paint the shipping container. Explain how you found your answer.

\[A = bh \]
\[A = 8.5 \cdot 8 \]
\[A = 68 \text{ ft}^2 \]

\[A = bh \]
\[A = 40 \cdot 8 \]
\[A = 320 \text{ ft}^2 \]

Total Area: \[68 + 68 + 68 + 68 + 320 + 320 = 832 \text{ sq ft} \]

or

\[(68 \cdot 2) + (320 \cdot 4) = 136 + 1280 = 1416 \text{ sq ft} \]

Two buckets of paint needed.
When landing a plane, it is important for pilots to know which way the wind is blowing. In the past, some airfields without control towers used large tetrahedrons (triangular pyramids) that would rotate in the wind to show the direction the pilot should land.

An airstrip’s tetrahedron is made by covering the exterior of its steel frame in sheet metal. Use the net below to calculate the area of sheet metal needed. All measurements are in feet.

\[
\begin{align*}
A &= \frac{1}{2} \times b \times h \\
A &= \frac{1}{2} \times 5 \times 18 \\
A &= 45 \text{ ft}^2 \\
\end{align*}
\]

\[
\begin{align*}
A &= \frac{1}{2} \times b \times h \\
A &= \frac{1}{2} \times 8 \times 3 \\
A &= 12 \text{ ft}^2 \\
\end{align*}
\]

\[
\begin{align*}
A &= \frac{1}{2} \times b \times h \\
A &= \frac{1}{2} \times 8 \times 18 \\
A &= 72 \text{ ft}^2 \\
\end{align*}
\]

\[
\begin{align*}
\frac{45 + 45 + 12 + 72}{2} &= \text{Total Area} \\
\text{Total Area is} &= 174 \text{ ft}^2.
\end{align*}
\]